Data Analysis

Criblage chimique: évaluation de la sensibilité aux molécules

L’étude de la réponse cellulaire face à un composé chimique est cruciale au développement de nouvelles molécules thérapeutiques. Une telle analyse se fait généralement par expérience de criblage, où les cellules (spécifiques à une maladie, telle la leucémie) sont exposées aux composés chimiques d’intérêt pour différentes concentrations. La réponse ou la sensibilité de ces cellules est conventionnellement quantifiée par la valeur de l’IC50 ou de l’EC50. Voici quelques notions importantes à garder en tête lorsque nous analysons ces valeurs. IC50/EC50 [...]

By | 13 février 2017|Categories: Analyse de données, Data Analysis|0 Commentaires

Régression logistique et GTEx

Lorsqu'on travaille avec toutes sortes de données, il arrive parfois que nous voulons prédire la valeur d'une variable qui n'est pas numérique. Dans ces cas-là, la régression logistique est tout à fait appropriée. On peut dire qu'elle est s'apparente à une régression linéaire sauf que la variable dépendante est une catégorie. Vous vous souvenez de la fonction de la régression linéaire où l'on essaie d'estimer les paramètres beta (les coefficients) qui s'ajustent le mieux la droite à nos données: \begin{equation} [...]

By | 27 janvier 2017|Categories: Bioinformatique, Data Analysis, Python|0 Commentaires

Introduction à cowplot, pour combiner plusieurs plots avec R

Bonjour à tous, aujourd'hui, nous allons voir une extension de la librairie ggplot2: cowplot Some helpful extensions and modifications to the 'ggplot2' package. In particular, this package makes it easy to combine multiple 'ggplot2' plots into one and label them with letters, e.g. A, B, C, etc., as is often required for scientific publications. Comme on peut le lire dans la description, cette librairie permet de créer des figures avec plusieurs graphiques (plots), mais pas uniquement. Il est aussi possible de [...]

By | 28 novembre 2016|Categories: Bioinformatique, Biologie, Data Analysis, R, Représentation grahique|0 Commentaires

Bootstraps et intervalles de confiance

Lors de l'analyse des données, vous pourriez vouloir ajuster (fitter) un type de courbe spécifique à un ensemble de données particulier. Ce type d'analyse peut nous éclaircir sur la relation entre deux (ou plusieurs...) paramètres quantifiables. L'object principal de cet article n'est pas le comment de l'ajustement-même, mais plutôt l'évaluation de sa qualité i.e. comment calculer un intervalle de confiance autour d'une courbe ajustée. Cela étant dit, je vous montrerai comment faire un ajustement simple en utilisant différentes librairies R, mais je [...]

By | 29 septembre 2016|Categories: Data Analysis, R, Visualisation de données|0 Commentaires

La méthode la plus rapide pour calculer une AUC

Contexte: AUC est un acronyme pour "Area Under the (ROC) Curve". Si vous n'êtes pas familier avec les notions de courbe ROC et d'AUC, je vous suggère de commencer par ce blog post avant de continuer. Dans plusieurs projets, il m'a fallu calculer un grand nombre d'AUC. J'ai commencé par devoir en calculer 25000, puis 230000 et, maintenant, j'en suis au tour de 1,5 million. Avec autant d'AUC, le temps nécessaire pour calculer une AUC devient un paramètre critique. Je n'ai pas [...]

By | 18 août 2016|Categories: Data Analysis, Performance, Python, R, Statistiques|0 Commentaires