Python

Régression logistique et GTEx

Lorsqu'on travaille avec toutes sortes de données, il arrive parfois que nous voulons prédire la valeur d'une variable qui n'est pas numérique. Dans ces cas-là, la régression logistique est tout à fait appropriée. On peut dire qu'elle est s'apparente à une régression linéaire sauf que la variable dépendante est une catégorie. Vous vous souvenez de la fonction de la régression linéaire où l'on essaie d'estimer les paramètres beta (les coefficients) qui s'ajustent le mieux la droite à nos données: \begin{equation} [...]

SciPy et les régressions logistiques

Il arrive souvent que l'on veuille voir s'il existe une une relation quelconque entre les points d'un jeu de données. Lorsqu'il est question de régressions linéaires, celles-ci peuvent être facilement visualisées avec Seaborn, une librairie Python visant l'exploration et la visualisation plutôt que l'analyse statistique. Quant aux régressions logistiques, SciPy est un bon outil à utiliser lorsque nous n'avons pas notre propre script d'analyse. Regardons le paquet optimisation 'optimize'                        from [...]

By |2017-04-29T16:58:18+00:009 juin 2016|Categories: Analyse de données, Python|Tags: , , , |0 Commentaires
Go to Top